Tm:YLF
Tm: YLF crystals (Thulium-doped yttrium fluoride lithium) have a low nonlinear refractive index and thermo optic constant, suitable for application in scientific research, production, education, and other optoelectronic fields.
Tm: YLF crystal is a negative uniaxial crystal with a negative refractive index temperature coefficient, which can offset some thermal distortion and thus has a high beam quality output. The pump wavelength is 792 nm, and the linear polarized laser with a wavelength of 1900 nm outputs in the direction of an axis.
Outputting light from the c axis is nonlinearly polarized. High-power laser output can be obtained by selecting the proper crystal size and doping concentration. Two-micron Tm3+ lasers are of interest for many scientific, defense, and medical applications. Thulium readily substitutes many crystal hosts suitable for high-average-power laser systems. It has an absorption band at ~0.8 μm, allowing excitation with commercially available high-power laser diodes.
Features of Tm: YLF Crystal:
- Low nonlinear refractive index
- Low thermo-optical constant
- Low polarization loss
- Long upper energy level fluorescence lifetime
- Small up-conversion effect
- No absorption loss of sensitized ions
Application of Tm: YLF Crystal:
- LIDAR systems for remote sensing applications
- Pump source for Ho3+:YAG lasers
- Medical diagnosis and treatment
- Laser radar
- Laser ranging
- Electro-optical countermeasure
- Laser remote sensing
- Laser imaging
- Optical signal processing
- Material processing
Material Specifications
Concentration Tolerance (atm%) | 2-4 at.% |
Lattice Constants | 4~5 |
Orientation | a-cut, other orientations also available |
Parallelism | <10” |
Perpendicularity | <5” |
Surface Finish | 10-5 S/D |
Wavefront Distortion | λ/8 @ 633nm |
Flatness | λ/10 @ 633nm |
Clear Aperture | 95% |
Length Tolerance | ±0.1 mm |
Face Dimensions Tolerance | +0/-0,1 mm |
Chamfer | <0,1 mm @45˚ |
Damage Threshold | over 15J/cm2 TEM00, 10ns, 10Hz |
Physical and Chemical Properties
Crystal Structure | Tetragonal |
Lattice Constant | a=5.16Å; c=10.85Å |
Density | 3.99 g/cm³ |
Melting Point | 819℃ |
Thermal Conductivity | 6 Wm-1K-1 |
Thermal Optical Coefficient | π = 4.3 x 10-6 x °K-1; σ = 2.0 x 10-6 x °K-1 |
Thermal Expansivity /(10-6·K-1 @ 25°C) | 10.1×10-6 (//c) K-1, 14.3×10-6((//a) K-1 |
Mohs Hardness | 5 |
Shear Modulus | 85 |
Specific Heat Capacity | 0.79 J/gK |
Poisson Ratio | 0.3 |
Optical and Spectral Properties
Laser Transition | 3F4→3H6 |
Laser Wavelength | π:1880 nm; σ:1908 nm |
Absorption Cross-section at Peak | 0.55×10-20 cm2 |
Absorption Bandwidth at Peak Wavelength | 16 nm |
Absorption Peak Wavelength | 792 nm |
Lifetime of3F4 Thulium Energy Level | 16 ms |
Quantum Efficiency | 2 |
Quantum Efficiency n2 | 0.6 x 10-13 |
Optical Quality | < 0.3 x 10-5 |
Refractive Index @1064 nm | no=1.448, ne=1.470 |
Laser Induced Damage Threshold | >10 J/cm2@1900 nm, 10 ns |
Coatings | R<0,5% @792 nm + R<0,15% @1800-1960 nm on both sides; custom coatings also available |
Absorption and Emission Spectra
References
[1] Yue, Chen, Xin-Yu, et al. A compact high efficient Tm:YLF laser dual-end-pumped by an equidirectional-polarizing fiber coupled laser diode at room temperature[J]. Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic, 2018, 158:1553-1557. |
[2] Cui Z , Yao B Q , Duan X M , et al. A graphene saturable absorber for a Tm:YLF pumped passively Q-switched Ho:LuAG laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(5):3082-3085. |
[3] Duan X M , Ding Y , Dai T Y , et al. A linewidth-narrowed Tm:YLF laser using by two etalons[J]. Optik – International Journal for Light and Electron Optics, 2015, 126(19):2108-2109. |
[4] Wang Y P , Dai T Y , Wu J , et al. A Q-switched Ho: YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm: YLF laser[J]. Infrared Physics & Technology, 2018, 91:8-11. |
[5] Dai Y , Li Y , Zou X , et al. Compact passively Q-switched Tm:YLF laser with a polycrystalline Cr:ZnS saturable absorber[J]. Optics & Laser Technology, 2014, 57:202-205. |
[6] Zhang B , Li L , He C , et al. Compact self-Q-switched Tm:YLF laser at 1.91 μm[J]. Optics & Laser Technology, 2018, 100. |
[7] Antipov O L , Zakharov N G , Fedorov M , et al. Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue[J]. Medical Laser Application, 2011, 26(2):67-75. |
[8] Linjun, Li, Xining, et al. High beam quality passively Q-switched operation of a slab Tm:YLF laser with a MoS2 saturable absorber mirror – ScienceDirect[J]. Optics & Laser Technology, 2019, 112:39-42. |
[9] Duan X M , Ding Y , Yao B Q , et al. High power acousto-optical Q-switched Tm:YLF-pumped Ho:GdVO4 laser[J]. Optik – International Journal for Light and Electron Optics, 2018, 163:39-42. |
[10] Ding Y , Han L , Yao B Q , et al. High power Tm:YLF bulk laser wavelength-stabilized by two F-P etalons[J]. Optik – International Journal for Light and Electron Optics, 2015, 126(9-10):990-992. |
[11] Y, Ding, D. X , et al. High power Tm:YLF laser operating at 1.94 μm[J]. Optik International Journal for Light & Electron Optics, 2015. |
[12] Yang X T , Mu Y L , Zhao N B . Ho:SSO solid-state saturable-absorber Q switch for pulsed Ho:YAG laser resonantly pumped by a Tm:YLF laser[J]. Optics & Laser Technology, 2018, 107:398-401. |
[13] Yokozawa T , Izawa J , Hara H . Mode control of a Tm:YLF microchip laser by a multiple resonator[J]. Optics Communications, 1998, 145( 1–6):98-100. |
[14] Hecht H , Burshtein Z , Katzir A , et al. Passive Q-switching of a Tm:YLF laser with a Co2+ doped silver halide saturable absorber[J]. Optical Materials, 2017, 64:64-69. |
[15] Razumova I , Tkachuk A , Nikitichev A , et al. Spectral-luminescent properties of Tm:YLF crystal[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 225(1-2):129-132. |
[16] Kalachev Y L , Mihailov V A , Podreshetnikov V V , et al. The study of a Tm:YLF laser pumped by a Raman shifted Erbium fiber laser at 1678 nm[J]. Optics Communications, 2011, 284(13):3357-3360. |
If you are intereted in Tm:YLF, please click the button below to enquire or ask for a samplel.
Related article(s) with Tm:YLF:
Related case study with Tm:YLF:
Related solution(s) with Tm:YLF:
Related video(s) with Tm:YLF:
There is no related video(s), please visit videos page to find out more.