MgO:LiNbO3 (Nonlinear Crystal)

MgO:LiNbO<sub>3</sub> (Nonlinear Crystal)” class=”wp-image-937″/></div><div class=

MgO-doped LiNbO3 nonlinear crystals have a higher optical damage threshold and higher nonlinear conversion efficiency than undoped LiNbO3 crystals. The doping can increase Raman scattering cross-section and reduce phonon mode loss. 

MgO: LiNbO3 nonlinear crystals have unique advantages over LiNbO3 nonlinear crystals for NCPM multiplication mixing. Optical parametric oscillation in Nd-doped laser crystals is widely used in optical parametric oscillation (OPO), optical parametric amplification (OPA), quasi-phase matching, and integrated optical waveguides.

Features of The LiNbO3 Nonlinear Crystals:

  • High homogeneity
  • Wide range of transparency
  • High damage threshold
  • Good optoelectronic properties
  • Good optoelectronic elasticity
  • Reduced photorefractive effects of intrinsic materials

Phase Matching Angle Experimental Value (T=293K)

Interaction Wavelength[μm]Φexp [deg]Note
SHG, o+o ⇒ e
1.0642⇒0.532174.55mol% MgO, All LN
765mol% MgO
76.55mol% MgO, Li/Nb=0.97
82.37mol% MgO
1.0795⇒0.5397575.15mol% MgO, All LN
1.0796⇒0.5398745mol% MgO, Li/Nb=0.97
1.3414⇒0.6707545mol% MgO, All LN
Note: The PM angle values are strongly dependent on melt stoichiometry.

Experimental Values ​​of NCPM Temperature

Interaction Wavelength [μm]T[℃]Attention
SHG, o+o ⇒ e
1.047⇒0.523575.3 
1.0642⇒0.532125.40.6mol% MgO, All LN
78.57mol% MgO, Along the X
85–109>5mol% MgO
1075mol% MgO
1105mol% MgO
110.65mol% MgO
110.87mol% MgO
8
9
Bulk action selector for row 9 Column 1, Row 9
#rowspan#
Column 2, Row 9
110.6
Column 3, Row 9
5mol% MgO
1.0795⇒0.539751155mol% MgO, All >LN
Note: The PM temperature value depends largely on the stoichiometry of the melt.

Experimental Values ​​for Angle and Temperature Bandwidth

Interaction Wavelength [μm]T[℃]θpm[deg] Δθint[deg]ΔT[℃]Note
SHG, o+o ⇒ e
1.0642⇒0.53212076 0.0635mol% MgO
25.4 900.680.6mol% MgO
107902.160.735mol% MgO
110.6 900.735mol% MgO

Refractive Index Change with Temperature

  355nm406nm532nm633nm1064nm
LiNbO325°C2.401792.326312.236222.203512.15714
50°C2.403432.328072.237652.204582.15757
75°C2.407222.33082.23942.206072.15884
MgO:LiNbO325°C2.384822.312482.22532.193232.14757
50°C2.387782.314412.226442.194242.14861
75°C2.391522.317182.228192.195672.14966

Temperature Derivatives of Refractive Index of LiNbO3 Doped with 5mol% MgO

Temperature Derivative of LiNbO3 Doped with MgO 5 mol%
λ[µm]dno/dT×106[ K-1]dne/dT×106[ K-1]
0.5397516.66372.763
0.632812.12164.866
1.07954.35654.19
1.34145.89552.665

The Absolute Value of the Second-order Nonlinear Coefficient of 5mol%MgO:LiNbO3

|d31(0.852µm)|=4.9pm/V|d33(0.852µm)|=28.4pm/V
|d31(1.064µm)|=4.4pm/V|d33(1.064µm)|=25.0pm/V
|d31(1.313µm)|=3.4pm/V|d33(1.313µm)|=20.3pm/V

Spectrum

MgOLiNbO3 absorption spectrum CRYLINKMgOLiNbO3 transmission spectrum CRYLINK
Absorption spectra of LiNbO3 and LiNbO3 : MgO (7 mol %) crystals in the absorption edge regionTransmission spectra of undoped and MGo-doped LN crystals
MgOLiNbO3 nonlinear crystal SHG CRYLINKMgOLiNbO3 nonlinear crystalthermal CRYLINK
LiNbO3 with type I matching (oo-e) : MgO (7 mol. Angle dependence of SHG strength in crystalMgO: LiNbO3 thermal-optical constants of ordinary and unusual waves at 25°C

References

  • [1] Su Z , Meng Q , Zhang B . Analysis on the damage threshold of MgO:LiNbO3 crystals under multiple femtosecond laser pulses[J]. Optical Materials, 2016, 60:443-449.
  • [2] Lv J , Cheng Y , Lu Q , et al. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation[J]. Optical Materials, 2016, 57:169-173.

[3] Holstein W L . Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3[J]. Journal of Crystal Growth, 1997, 171(s 3–4):477-484.
[4] Li Z , Bing P , Yuan S , et al. Investigation on terahertz generation at polariton resonance of MgO:LiNbO3 by difference frequency generation[J]. Optics & Laser Technology, 2015, 69:13-16.
[5] Chen Y L , Yuan J W , Yan C F , et al. Low-pump-threshold tunable optical parametric oscillator using periodically poled MgO:LiNbO 3[J]. Optics Communications, 2007, 273(2):560-563.
[6] Lai Y J , Chen J C , Liao K C . Investigations of ferroelectric domain structures in the MgO : LiNbO 3 fibers by LHPG[J]. Journal of Crystal Growth, 2010, 198:531-535.
[7] Chen Y , Guo J , Liu X , et al. Highly efficient blue light of femtosecond pulses by second-harmonic generation in periodically poled MgO:LiNbO3[J]. Optics Communications, 2004, 238(1-3):201-204.
[8] Shen J , Ding C . Investigation of operational characteristics of terahertz-wave parametric oscillators pumped by picosecond based on MgO:LiNbO3 crystal[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(15):2140-2146.
[9] A X C , B Z W , A S H , et al. Optical and structural characterization of annealed proton exchange waveguides in Y-cut MgO:LiNbO 3[J]. Optical Materials, 2005, 27( 10):1596-1601.
[10] Hong-Ki, Kim, and, et al. Measurement of cascaded phase shift in MgO:LiNbO3 single crystal by nonlinear ellipsometric method[J]. Optics Communications, 1999.
[11] Burlot R , R Moncorgé, Manaa H , et al. Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3 and LiTaO3 single crystals relevant for laser applications[J]. Optical Materials, 1996, 6(4):313-330.
[12] Li Z , Bing P , Xu D , et al. High-power tunable terahertz generation from a surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(21):4884-4886.
[13] Li H P , Tang D Y , Ng S P , et al. Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2006, 38(3):192-195.
[14] Dixit N , Mahendra R , Naraniya O P , et al. High repetition rate mid-infrared generation with singly resonant optical parametric oscillator using multi-grating periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2010, 42(1):18-22.
[15] 代丽, 刘春蕊, 闫哲华, et al. Effect of dopant concentration on the spectra characteristic in Zr4+ doped Yb:Nd:LiNbO3 crystals[J]. Journal of Rare Earths, 2017(35):761-766.
[16] Bhushan R , Yoshida H , Tsubakimoto K , et al. High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3[J]. Optics Communications, 2008, 281(14):3902-3905.
[17] Jiang L , Li B , Wang H F . Infrared absorption study of OH in MgO:LiNbO 3 doped with Cr and Nd[J]. Physics Letters A, 1995, 205(1):112-116.
[18] Zhang B , Jiao Z , Wang B . Efficient second-harmonic generation from polarized thulium-doped fiber laser with periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2015, 69:60-64.
[19] Rodriguez-Mendoza, U. R , Santiuste M , et al. Pressure-induced effects on the spectroscopic properties of Nd3+ in MgO:LiNbO3 single crystal. A crystal field approach[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2017.

If you are intereted in MgO:LiNbO3 (Nonlinear Crystal), please click the button below to enquire or ask for a samplel.

Related article(s) with MgO:LiNbO3 (Nonlinear Crystal):

Related case study with MgO:LiNbO3 (Nonlinear Crystal):

There is no related case study with this product, please visit case study page to find out more.

Related solution(s) with MgO:LiNbO3 (Nonlinear Crystal):

Related video(s) with MgO:LiNbO3 (Nonlinear Crystal):

There is no related video(s), please visit videos page to find out more.

Scroll to Top