Ho:YAG

Ho:YAG

The radiation wavelength of Ho3+ ions is near 2100 nm, located in the human eye safe band. It has high atmospheric transmittance and important application prospects in remote sensing detection, laser ranging, laser radar, etc.

Meanwhile, 2100 nm is located in the absorption peak of the water molecule, which is highly absorbed by human tissues. When Ho laser is used for medical surgery, its penetration depth in the human body is only a few tens of micrometers. It has little heat damage to the surrounding tissues. Therefore, it is widely used in medical surgery and treatment. Ho laser can also be used as a pump source. Through the nonlinear effect of crystal (such as ZGP crystal), an infrared laser with a wavelength of 3 ~ 5 mm can be realized.

  • High laser gain
  • Safe for eyes and good atmosphere transmission
  • High-energy storage capability
  • Low quantum defect
  • Long fluorescence life
  • Large emission cross section
  • High slope efficiency
  • Low up-conversion loss and re-absorption loss

Material Specifications

MaterialsHo: YAG
Concentration Tolerance (atm%)0.2% ~3%(as per customers request)
Orientation<111> crystalline direction
Parallelism<10”
Perpendicularity<5”
Surface Finish
10/5 Scratch/dig per MIL-O-1380A
Wavefront Distortion
λ/8per inch @633nm
Surface Flatnessλ/10@ 633 nm
Clear Aperture
>90
Thickness/Diameter Tolerance
Rods with diameter:(+0、-0.05)mm,( ±0.5) mm

Physical and Chemical Properties

Crystal StructureCubic
Lattice Constant
12.01Å
Density
4.56g/cm3
Melting Point
1970°C
Thermal Conductivity14W/m/K, 20°C; 10.5W/m/K, 100°C
Thermal Shock Resistance790W/m
Thermal Optical Coefficient(dn/dT)7.3×10-6/ K
Thermal Expansion /(10-6•K-1 @ 25°C)[100]:8.2×10-6/K@ 0~250℃; [110]:7.7×10-6/K@0~250℃;
[111]: 7.8×10-6/K@0~250℃
Hardness (Mohs)8.5
Young`s Modulus /GPa3.17×104Kg/mm2
Shear Modulus /Gpa310GPa
Extinction Ratio>28dB
Specific Heat0.59J/g.cm3@0-20℃
Specific HeatInsoluble in water, slightly soluble in ordinary acids
Poisson Ratio0.3

Optical and Spectral Properties

Laser Transition5I75I8
Laser Wavelength2.05μm
Effective Stimulated Absorption Cross Sectionpan>1.09×10-20cm2
Effectively Stimulated Emission Cross Section/span>1.14×10-20cm2
Pump Wavelength1908 nm
Laser Wavelength2090 nm
Fluorescence Lifetime7 ms
Quantum Efficiency1
Refractive Index @1.030 μm1.82
Upper Conversion Loss Factor1.8, 2.6, 5.3×10-18cm3/s

Absorption and Emission Spectra

Ho-YAG laser crystal absorption spectrumHo-YAG laser crystal emission spectrum

References

[1]  Duan X M ,  Shen Y J ,  Yao B Q , et al. A 106W Q-switched Ho:YAG laser with single crystal[J]. Optik – International Journal for Light and Electron Optics, 2018, 169:224-227.
[2]  Wang Y P ,  Dai T Y ,  Wu J , et al. A Q-switched Ho: YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm: YLF laser[J]. Infrared Physics & Technology, 2018, 91:8-11.
[3] J. Pokorný and O. Köhler and T. Hanuš and P. Koranda and H. Jelínková and M. Němec and M. Urban and R. Grill. C82 Urinary calculus and artificial sample fragmentation during Er:YAG and Ho:YAG lithotripsy in vitro[J]. European Urology Supplements, 2009.
[4]  Antipov O L ,  Zakharov N G ,  Fedorov M , et al. Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue[J]. Medical Laser Application, 2011, 26(2):67-75.
[5]  Mcdaniel S A ,  Berry P A ,  Cook G , et al. CW and passively Q-Switched operation of a Ho:YAG waveguide laser[J]. Optics & Laser Technology, 2017, 91:1-6.
[6]  Li J ,  Chen Q ,  Wu W , et al. Densification and optical properties of transparent Ho:YAG ceramics[J]. Optical Materials, 2013, 35(4):748-752.
[7]  Kaczmarek S M ,  ?Endzian W ,  ?Ukasiewicz T , et al. Effects of gamma irradiation and annealing treatments on the performance of Cr;Tm;Ho:YAG lasers[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 1998, 54(13):2109-2116.
[8] Zhao, T, Chen, et al. Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers[J]. OPTICAL MATERIALS -AMSTERDAM-, 2013.
[9]  W. X , Zhang, and, et al. Fabrication, properties and laser performance of Ho:YAG transparent ceramic[J]. Journal of Alloys & Compounds, 2010.
[10] Sidorowicz, Agata, Nakielska, et al. Fabrication and optical studies of transparent Tm, Ho:YAG ceramics[J]. Optical Materials Amsterdam, 2015.
[11] M, Falconieri, and, et al. Fluorescence dynamics in an optically-excited Tm,Ho:YAG crystal[J]. Optical Materials, 1997.
[12]  Yang Y ,  Ye L ,  Bao R , et al. Growth and characterization of Yb:Ho:YAG single crystal fiber[J]. Infrared Physics & Technology, 2018:85-89.
[13]  Yang X T ,  Mu Y L ,  Zhao N B . Ho:SSO solid-state saturable-absorber Q switch for pulsed Ho:YAG laser resonantly pumped by a Tm:YLF laser[J]. Optics & Laser Technology, 2018, 107:398-401.
[14] Bagayev,  S. N , Osipov, et al. Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical properties, and laser performance[J]. OPTICAL MATERIALS -AMSTERDAM-, 2015.
[15]  Yuan J H ,  Yao B Q ,  Duan X M , et al. Resonantly pumped high power acousto-optical Q-switched Ho:YAG ceramic laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(4):1595-1598.
[16]  Edvardsson S ,  ?Berg D . The energy matrix using determinantal product states applied to Ho:YAG[J]. Journal of Alloys and Compounds, 2000, 303(none):280-284.
[17] Jiang, Zhang, Zhenguo, et al. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser[J]. Infrared physics and technology, 2016.

Related case study with Ho:YAG:

There is no related case study with this product, please visit case study page to find out more.

Related solution(s) with Ho:YAG:

Related video(s) with Ho:YAG:

There is no related video(s), please visit videos page to find out more.

Scroll to Top